Interactions of Insula Subdivisions-Based Networks with Default-Mode and Central-Executive Networks in Mild Cognitive Impairment
نویسندگان
چکیده
Interactions between the brain networks and subnetworks are crucial for active and resting cognitive states. Whether a subnetwork can restore the adequate function of the parent network whenever a disease state affects the parent network is unclear. Investigations suggest that the control of the anterior insula-based network (AIN) over the default-mode network (DMN) and central-executive network (CEN) is decreased in individuals with mild cognitive impairment (MCI). Here, we hypothesized that the posterior insula-based network (PIN) attempts to compensate for this decrease. To test this, we compared a group of MCI and normal cognitive individuals. A dynamical causal modeling method has been employed to investigate the dynamic network controls/modulations. We used the resting state functional MRI data, and assessed the interactions of the AIN and of the PIN, respectively, over the DMN and CEN. We found that the greater control of AIN than that of DMN (Wilcoxon rank sum: Z = 1.987; p = 0.047) and CEN (Z = 3.076; p = 0.002) in normal group and the lower (impaired) control of AIN than that of CEN (Z = 8.602; p = 7.816 × 10-18). We further revealed that the PIN control was significantly higher than that of DMN (Z = 6.608; p = 3.888 × 10-11) and CEN (Z = 6.429; p = 1.278 × 10-10) in MCI group where the AIN was impaired, but that control was significantly lower than of DMN (Z = 5.285; p = 1.254 × 10-7) and CEN (Z = 5.404; p = 6.513 × 10-8) in normal group. Finally, the global cognitive test score assessed using Montreal cognitive assessment and the network modulations were correlated (Spearman's correlation: r = 0.47; p = 3.76 × 10-5 and r = -0.43; p = 1.97 × 10-4). These findings might suggest the flexible functional profiles of AIN and PIN in normal aging and MCI.
منابع مشابه
Racial Differences in Insular Connectivity and Thickness and Related Cognitive Impairment in Hypertension
Hypertensive African-Americans have a greater risk of cognitive impairment than hypertensive Caucasian-Americans. The neural basis of this increased risk is yet unknown. Neuroimaging investigations suggest that the normal neural activity comprises complex interactions between brain networks. Recent studies consistently demonstrate that the insula, part of the salience network, provides modulati...
متن کاملDefault Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking
Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativi...
متن کاملImpact of real-time fMRI working memory feedback training on the interactions between three core brain networks
Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional...
متن کاملDisrupted Brain Intrinsic Networks and Executive Dysfunction in Cirrhotic Patients without Overt Hepatic Encephalopathy
Objective Patients with cirrhosis often exhibit cognitive deficits, particularly executive dysfunction, which is considered a predictor of overt hepatic encephalopathy (OHE). We examined brain intrinsic networks associated with executive function to investigate the neural basis of this cognitive deficiency in cirrhosis. Methods Resting-state functional MRI data were acquired from 20 cirrhotic...
متن کاملCortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia
This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (T = 50 ± 10) and struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017